Home
Class 11
MATHS
The n t h derivative of x e^x vanishes...

The `n t h` derivative of `x e^x` vanishes when (a)`x=0` (b) `x=-1` (c)`x=-n` (d) `x=n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find nth derivative of x^(n)*e^(x)

The derivative of y=(1-x)(2-x)...(n-x) at x=1 is (a) 0( b) (-1)(n-1)!(c)n!-1(d)(-1)^(n-1)(n-1)!

The nth derivative of the function f(x)=(1)/(1-x^(2))[ where in(-1,1) at the point x=0 where n is even is (a) 0 (b) n! (c) n^(n)C_(2)(d)2^(n)C_(2)

Let f_n(x) be the n^(th) derivative of f(x).the least value of n so that f_n=f_(n+1) where f(x)=x^2+e^x is

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to 1+x (b) 1-x (c) x (d) 1/x

The value of the determinant of n^(t h) order, being given by |x1 11x11 1x | is (x-1)^(n-1)(x+n-1) b. (x-1)^n(x+n-1) c. (1-x)^(-1)(x+n-1) d. none of these

When n is any postive integer,the expansion (x+a)^(n) = .^(n)c_(0)x^(n) + .^(n)c_(1)x^(n-1)a + ……. + .^(n)c_(n)a^(n) is valid only when

If the middle term of (1+x)^(2n) is the greatest term,then x lies between (A)n-1

The orthogonal trajectories of the family of curves an a^(n-1)y=x^(n) are given by (A)x^(n)+n^(2)y= constan t(B)ny^(2)+x^(2)=constan t(C)n^(2)x+y^(n)=constan t(D)y=x