Home
Class 12
MATHS
int(0)^( pi)log tan xdx=...

int_(0)^( pi)log tan xdx=

Promotional Banner

Similar Questions

Explore conceptually related problems

" (a) "int_(0)^( pi)tan xdx

int_(0)^( pi) tan xdx

int_(0)^( pi)log xdx

" (x) "int_(0)^( pi/4)tan xdx

Evaluate: int_(0)^( pi)x log sin xdx

Evaluate int_(0)^( pi)x log sin xdx

Prove: int_(0)^( pi/2)log|tan x|dx=0

int_(0)^( pi/2)log[tan x*cot x]dx

Prove that: int_(0)^( pi/2)log|tan x+cot x|dx=pi log_(e)2

If int_(0)^( pi/2)log sin xdx=k, then the value of the definite integral int_(0)^( pi/4)log(1+tan theta)d theta( i) -(K)/(8)( ii) -(K)/(4) (iii) (K)/(8) (iv) (K)/(4)