Home
Class 12
PHYSICS
The linear density of a thin rod of leng...

The linear density of a thin rod of length 1m lies as `lambda = (1+2x)`, where x is the distance from its one end. Find the distance of its center of mass from this end.

Text Solution

Verified by Experts

Let us consider a small length dx of the rod shown in the figure.

Its mass `dm = lambda dx = (1+2x)dx`
`X_(cm)=(int x dm)/(int dm)=(int_(0)^(1)x(1+2x)dx)/(int_(0)^(1)(1+2x)dx)=([(x^(2))/(2)+(2x^(3))/(3)]_(0)^(1))/([x + x^(2)]_(0)^(1))=(7)/(12)m`
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF PARTICLES AND ROTATIONAL MOTION

    AAKASH INSTITUTE|Exercise Illustration|4 Videos
  • SYSTEM OF PARTICLES AND ROTATIONAL MOTION

    AAKASH INSTITUTE|Exercise Assignment (Section - A) Objective Type Questions (One option is correct)|62 Videos
  • SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS

    AAKASH INSTITUTE|Exercise Assignment (Section-D (Assertion and reason))|5 Videos
  • TEST 1

    AAKASH INSTITUTE|Exercise EXERCISE|9 Videos

Similar Questions

Explore conceptually related problems

The density of a linear rod of length L varies as rho=A+Bx where x is the distance from theleft end. Locate the centre of mass.

If the linear density of a rod of length L varies as lambda = A+Bx , find the position of its centre of mass .

The linear mass density of a thin rod AB of length L varies from A to B as lambda (x) =lambda_0 (1 + x/L) . Where x is the distance from A. If M is the mass of the rod then its moment of inertia about an axis passing through A and perpendicualr to the rod is :

The density of a thin rod of length l varies with the distance x from one end as rho=rho_0(x^2)/(l^2) . Find the position of centre of mass of rod.

If the linear density (mass per unit length) of a rod of length 3 m is proportional to x , where x , where x is the distance from one end of the rod, the distance of the centre of gravity of the rod from this end is.

The mass per unit length of a non - uniform rod of length L is given mu = lambda x^(2) , where lambda is a constant and x is distance from one end of the rod. The distance of the center of mas of rod from this end is

The mass per unit length of a non-uniform rod of length L is given by mu= lamdaxx2 ​, where lamda is a constant and x is distance from one end of the rod. The distance of the center of mass of rod from this end is :-

The mass per unit length of a non- uniform rod OP of length L varies as m=k(x)/(L) where k is a constant and x is the distance of any point on the rod from end 0 .The distance of the centre of mass of the rod from end 0 is

Find centre of mass of given rod of linear mass density lambda=(a+b(x/l)^2) , x is distance from one of its end. Length of the rod is l .

A heavy metallic rod of non-uniform mass distribution, is hanged vertically from a rigid support. The linear mass density varies as lambda_((x))=k xx x where x is the distance measured along the length of rod, from its lower end. Find extension in rod due to its own weight.

AAKASH INSTITUTE-SYSTEM OF PARTICLES AND ROTATIONAL MOTION-Try Yourself
  1. The linear density of a thin rod of length 1m lies as lambda = (1+2x),...

    Text Solution

    |

  2. Two bodies of masses 1kg and 3kg are lying in xy plane at (0,0) and (2...

    Text Solution

    |

  3. Three point masses of 1kg, 2kg and 3kg lie at (0,0), (1,2), (3,-1) res...

    Text Solution

    |

  4. Three particles of masses m,m and 4kg are kept at a verticals of trian...

    Text Solution

    |

  5. Three particles having their masses in the ratio 1 : 3 : 5 are kept at...

    Text Solution

    |

  6. Centre of mass of the system lies inside disc or square plate and why ...

    Text Solution

    |

  7. Two particles of equal mass are moving along the same line with the sa...

    Text Solution

    |

  8. Two particles of equal mass are moving along the same straight line wi...

    Text Solution

    |

  9. A shell following a parabolic path explodes somewhere in its flight. T...

    Text Solution

    |

  10. All the particles are situated at a distance R from the origin. The di...

    Text Solution

    |

  11. Will the velocity and acceleration of centre of mass change if particl...

    Text Solution

    |

  12. vecA=(3hati+2hatj-6hatk) and vecB=(hati-2hatj+hatk), find the scalar p...

    Text Solution

    |

  13. vecA=(hati-2hatj+6hatk) and vecB=(hati-2hatj+hatk), find the cross pro...

    Text Solution

    |

  14. Find a unit vector in the direction of vector vecA=(hati-2hatj+hatk)

    Text Solution

    |

  15. Find a vector perpendicular to vector vecA=(hati+2hatj-3hatk) as well ...

    Text Solution

    |

  16. The angular displacement of a particle is 24 rad in 10 seconds. Calcul...

    Text Solution

    |

  17. The angular velocity of a rigid body is 24 rad s^(-1), Calculate the t...

    Text Solution

    |

  18. The angular velocity of circular disc of radius 2cm is 20 rad s^(-1). ...

    Text Solution

    |

  19. What is the angular velocity of a particle lying on the axis of rotati...

    Text Solution

    |

  20. What is the angular acceleration of a particle moving with constant an...

    Text Solution

    |

  21. A wheel is rotating with an angular velocity of 3 rad s^(-1). If the a...

    Text Solution

    |