Home
Class 12
PHYSICS
Let vec(A)=2hat(i)-3hat(j)+4hat(k) and v...

Let `vec(A)=2hat(i)-3hat(j)+4hat(k)` and `vec(B)=4hat(i)+hat(j)+2hat(k)` then `|vec(A)xx vec(B)|` is equal to

A

440

B

`2sqrt(110)`

C

`sqrt(220)`

D

`4sqrt(65)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the cross product of vectors \(\vec{A}\) and \(\vec{B}\), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{A} = 2\hat{i} - 3\hat{j} + 4\hat{k} \] \[ \vec{B} = 4\hat{i} + \hat{j} + 2\hat{k} \] ### Step 2: Set up the determinant for the cross product We will use the determinant method to calculate \(\vec{A} \times \vec{B}\). The determinant is set up as follows: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 4 \\ 4 & 1 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant To compute the determinant, we expand it: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} -3 & 4 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 4 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -3 \\ 4 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -3 & 4 \\ 1 & 2 \end{vmatrix} = (-3)(2) - (4)(1) = -6 - 4 = -10 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & 4 \\ 4 & 2 \end{vmatrix} = (2)(2) - (4)(4) = 4 - 16 = -12 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -3 \\ 4 & 1 \end{vmatrix} = (2)(1) - (-3)(4) = 2 + 12 = 14 \] Putting it all together: \[ \vec{A} \times \vec{B} = -10\hat{i} + 12\hat{j} + 14\hat{k} \] ### Step 4: Find the magnitude of the cross product Now we calculate the magnitude: \[ |\vec{A} \times \vec{B}| = \sqrt{(-10)^2 + (12)^2 + (14)^2} \] Calculating each term: \[ (-10)^2 = 100, \quad (12)^2 = 144, \quad (14)^2 = 196 \] Adding these values: \[ 100 + 144 + 196 = 440 \] Thus, \[ |\vec{A} \times \vec{B}| = \sqrt{440} \] ### Step 5: Simplify the square root We can simplify \(\sqrt{440}\): \[ \sqrt{440} = \sqrt{4 \times 110} = 2\sqrt{110} \] ### Final Answer The magnitude of \(\vec{A} \times \vec{B}\) is: \[ |\vec{A} \times \vec{B}| = 2\sqrt{110} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Let vec( a) = 2 hat(i) - 3 hat(j) + 4 hat(k) and vec( b) = 7 hat(i) + hat(j) - 6 hat(k) . If vec( r ) xx vec( a) = vec( r ) xx vec( b) , vec( r ) . ( hat(i) +2 hat(j) + hat(k)) = -3 , then vec ( r ). ( 2 hat(i)- 3hat(j) + hat(k)) is equal to :

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . If vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c) , then find value of p,q are r.

If vec(a)= 2 hat(i) - 3hat(j) - hat(k), vec(b) = hat(i) +4hat(j) -2 hat(k) , then what is (vec(a) xx vec(b)) xx (vec(a)- vec(b)) is equal to ?

If vec(a)=2hat(i)-3hat(j)-hat(k) and vec(b)=hat(i)+4hat(j)-2hat(k) , then check whether vec(a)xx vec(b)=vec(b)xx vec(a) .

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .