Home
Class 12
PHYSICS
The torque of a force vec(F)=-2hat(i)+2h...

The torque of a force `vec(F)=-2hat(i)+2hat(j)+3hat(k)` acting on a point `vec(r )=hat(i)-2hat(j)+hat(k)` about origin will be

A

`8hat(i)+5hat(j)+2hat(k)`

B

`-8hat(i)-5hat(j)-2hat(k)`

C

`8hat(i)-5hat(j)+2hat(k)`

D

`-8hat(i)+5hat(j)-2hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \( \vec{\tau} \) of a force \( \vec{F} \) acting on a point defined by the position vector \( \vec{r} \) about the origin, we use the formula: \[ \vec{\tau} = \vec{r} \times \vec{F} \] Where \( \times \) denotes the cross product. ### Step 1: Identify the vectors We have: - Force vector \( \vec{F} = -2\hat{i} + 2\hat{j} + 3\hat{k} \) - Position vector \( \vec{r} = \hat{i} - 2\hat{j} + \hat{k} \) ### Step 2: Set up the determinant for the cross product We will use the determinant method to calculate the cross product. The formula for the cross product in determinant form is: \[ \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ -2 & 2 & 3 \end{vmatrix} \] ### Step 3: Calculate the determinant Now we will calculate the determinant: \[ \vec{\tau} = \hat{i} \begin{vmatrix} -2 & 1 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ -2 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -2 & 1 \\ 2 & 3 \end{vmatrix} = (-2)(3) - (1)(2) = -6 - 2 = -8 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} = (1)(3) - (1)(-2) = 3 + 2 = 5 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & -2 \\ -2 & 2 \end{vmatrix} = (1)(2) - (-2)(-2) = 2 - 4 = -2 \] ### Step 4: Combine the results Now substituting back into the equation for \( \vec{\tau} \): \[ \vec{\tau} = -8\hat{i} - 5\hat{j} - 2\hat{k} \] ### Final Result Thus, the torque \( \vec{\tau} \) is: \[ \vec{\tau} = -8\hat{i} - 5\hat{j} - 2\hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(k)+hat(k) about origin will be

The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point r = 7 hat(i) + 3 hat(j) + hat(k) about origin will be

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

A force vec(F)=(2hat(i)+3hat(j)-5hat(k))N acts at a point vec(r )_(1)=(2hat(i)+4hat(j)+7hat(k))m . The torque of the force about the point vec(r )_(2)=(hat(i)+2hat(j)+3hat(k))m is

If vec(a)=2hat(i)+3hat(j)-hat(k) , then |vec(a)| is :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :