Home
Class 12
MATHS
Given f^(prime)(1)=1"and"d/(dx)(f(2x))=...

Given `f^(prime)(1)=1"and"d/(dx)(f(2x))=f^(prime)(x)AAx > 0`.If `f^(prime)(x)` is differentiable then there exies a number `c in (2,4)` such that `f''(c)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f' (1) = 1 and d/(dx)f(2x)=f'(x) AA x > 0 . If f' (x) is differentiable then there exists a number c in (2,4) such that f'' (c) equals

Given f'(1)=1 and (d)/(dx)f(2x))=f'(x)AA x>0 If f'(x) is differentiable then there exists a numberd x in(2,4) such that f''(c) equals

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

If f(x)=(x^2)/(|x|) , write d/(dx)(f(x))

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

Let f(x)={(sinx^2)/x x!=0 0x=0, then f^(prime)(0^+)+f^(prime)(0^-) has the value equal to (a) 0 (b) 1 (c) 2 (d) None of these

If d/dx (ϕ(x))=f(x) , then int_(1)^(2) f(x) dx is ______