Home
Class 11
MATHS
If f(x)=|x|^(|sinx|), then find f^(prime...

If `f(x)=|x|^(|sinx|),` then find `f^(prime)(-pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(|x|)^(|sin|), then f'((-pi)/(4)) is-

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

If f(x)=sqrt(sinx)," find "f^(')(x) .

if f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx

If f(x)=|cos x-sin x|, find f'((pi)/(6)) and f'((pi)/(3))

If f(x)= 2 sinx -3x^(4)+8 , then find f'(x) is

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))

If f(x)=2sinx-x^(2) , then in x in [0, pi]