Home
Class 11
MATHS
y=tan^(-1)(3a^2x-x^3)/(a(a^2-3x^2))...

`y=tan^(-1)(3a^2x-x^3)/(a(a^2-3x^2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=(tan^(-1)(3a^(2)x-x^(3)))/(a(a^(2)-3x^(2))) then (dy)/(dx)

Sketch the graph for y=tan^(-1)((3x-x^(3))/(1-3x^(2)))

Prove that 3tan^(-1)x=tan^(-1)((3x-x^3)/(1-3x^2))

tan^(-1)((3x-x^(3))/(1-3x^(2)))

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

y= tan^(-1)((3x-x^(3))/(1-3x^(2))) Find dy/dx

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))