Home
Class 11
MATHS
If n >2, then prove that C1(a-1)-C2xx(a-...

If `n >2,` then prove that `C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Find the sum 1xx2xx C_(1)+2xx3C_(2)+..+n(n+1)C_(n), where C_(r)=^(n)C_(r)

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Show that,nCr+(n-1)C(r-1)+(n-1)C(r-2)=(n+1)Cr

If 1<=r<=n, then n^(n-1)C_(r)=(n-r+1)^(n)C_(r-1)

Prove that ""^(n)C_(r )+2""^(n)C_(r-1)+ ""^(n)C_(r-2)= ""^(n+2)C_(r ) .

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .