Home
Class 10
MATHS
" (0) "(1-i)/(cos(pi)/(3)+i sin(pi)/(3))...

" (0) "(1-i)/(cos(pi)/(3)+i sin(pi)/(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

z=(1-i)/(cos(pi/3)+i sin(pi/3))

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: ((1-i))/(("cos"(pi)/(3)+"i sin"(pi)/(3)))

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

Convert (1-i)/( cos ""( pi)/( 3) +i sin ""(pi)/(3)) into polar form

Write in polar form of the complex numbers. ( i-1)/(cos" "(pi)/(3) + i sin " "(pi)/(3))

Prove that (i)(1-sqrt(3)i)=2((cos)(pi)/(3)-i(sin)(pi)/(3))

If z_(1)=sqrt(2)((cos pi)/(4)+i sin((pi)/(4))) and z_(2)=sqrt(3)((cos pi)/(3)+i sin((pi)/(3))) then |z_(1)z_(2)|=