Home
Class 11
MATHS
The number of ways of choosing triplet (...

The number of ways of choosing triplet `(x , y ,z)` such that `zgtmax{x, y}` and `x ,y ,z in {1,2,.......... n, n+1}` is `(A)` `.^n+1C_3+^(n+2)C_3` `(B)``n(n+1)(2n+1)//6` `(C)``1^2+2^2+..............+n^2` `(D)` `2(.^(n+2)C_3)-(.^(n+1)C_2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (.^(2n)C_1)^2+ 2.(.^(2n)C_2)^2+3.(.^(2n)C_3)^2+...+2n. (.^(2n)C_(2n))^2 = 18 .^(4n-1)C_(2n-1)

The arithmetic mean of 1,2,3,...n is (a) (n+1)/(2) (b) (n-1)/(2) (c) (n)/(2)(d)(n)/(2)+1

If n>=2 then 3.C_(1)-4.C_(2)+5.C_(3)-.........+1)^(n-1)(n+2)*C_(n)=

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these

If n>3, then xyC_(0)-(x-1)(y-1)C_(1)+(x-2)(y-2)C_(2)-(x-3)(y-3)C_(3)+............+(-1)^(n)(x-n)(y-n)C_(n) equals

If (1+2x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a=(^(n)C_(2))^(2) b.^(n)C_(r).^(n)C_(r+1) c.^(2n)C_(r) d.^(2n)C_(r+1)