Home
Class 11
MATHS
" Find 'x' satisfying the equation "4^(l...

" Find 'x' satisfying the equation "4^(log_(10)x+1)-6^(log_(10)x)-2.3^(log_(10)x^(2)+2)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

FInd 'x' satisfying the equation 4^(log_(10)x+1)-6^(log_(10)x)-2.3^(log10)x^(2)+2=0

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Solve the following equation. 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

The value 'x' satisfying the equation, 4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____

The value 'x' satisfying the equation, 4^(log_(g)3)+9^(log_(2)4)=10^(log_(x)83)is ____