Home
Class 11
MATHS
y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sq...

`y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e r e` `-1

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .

tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),absxx le 1/sqrt2 , is equal to

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)

y=Tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))) then find (8ddy)/(8ddx)

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)