Home
Class 12
MATHS
Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-...

Let `f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1` Then `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x-1/x" then "f'(-1)

If f(x)={(1/2(|x|-1),|x| gt 1),(tan^(-1)x,|x| le 1):} then f(x) is

Let f(x)=x((1)/(x-1)+(1)/(x)+(1)/(x+1)),x>1

Let f(x) = x(1/(x - 1) + 1/x + 1/(x + 1)), x gt 1 , Then

Let f(x)=x((1)/(x-1)+(1)/(x)+(1)/(x+1)), x gt 1 . Then

Let f(x)={(tan^(-1)x, , |x|ge1),((x^(2)-1)/4, , |x|lt1):} then domain of f'(x) is

Let f(x)={(tan^(-1)x, , |x|ge1),((x^(2)-1)/4, , |x|lt1):} then domain of f'(x) is

Let f(x) = x - 1/x , then f' (-1) is