Home
Class 11
MATHS
Instead of the usual definition of deriv...

Instead of the usual definition of derivative `Df(x),` if we define a new kind of derivative `D^*F(x)` by the formula `D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x)` mean `[f(x)]^2` and if `f(x)=xlogx` ,then `D^*f(x)|_(x=e)` has the value (A)e (B) 2e (c) 4e (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Instead of the usual defination of derivatie Df(x), if we define a new kind of derivatie D^(**)F(x) by the formula D^(**)(x)=lim_(hrarr0) (f^(2)(x+h)-f^(2)(x))/(h)." where "f^(2)(x)" means "[f(x)]^(2) and if f(x)=x log x, then D^(**)f(x)|_(x=e) has the value

People living at Mars,instead of the usual definition of derivative Df(x) ,define a new kind of derivative D^(*)f(x) by the formula D^(*)f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) where f^(2)(x)means[f(x)]^(2) .If f(x)=x ln x then D^(*)f(x)|_(x=e) has the value (A)e(B)2e(C)4e(D) none

people living at Mars ,instead of the usual definition of derivative Df(x) define a new kind of derivative Df(x) by the formula Df(x)=lim_(h->0) (f^2(x+h)-f^2(x))/h where f^x means [f(x)]^2. If f(x)=xInx then Df(x)|_(x=e) has the value (a) e (b) 2e (c) 4e (d) non

D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) If f(x)=x ln x then D*f(x) at x=e equals

Let the derivative of f(x) be defined as D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) where f^(2)(x)=(f(x))^(2) if u=f(x),v=g(x), then the value of D*{u.v} is

If f(x)="cos"((log)_e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value (a) -1 (b) 1/2 (c) -2 (d) none of these

The derivative of f(x)=e^(2x) is

If f(x)=(x+1)^(cot x) be continuous at x=0, the f(0) is equal to 0( b) (1)/(e)(c)e(d) none of these

f(x)=(1n(x^2+e^x))/(1n(x^4+e^(2x)))dotT h e n lim_(x->oo)f(x) is equal to (a) 1 (b) 1/2 (c) 2 (d) none of these