Home
Class 12
MATHS
sin^2 A+ sin^2(A-B) + 2 sin A cosB sin(B...

`sin^2 A+ sin^2(A-B) + 2 sin A cosB sin(B - A)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^2A+sin^2(A-B)+2sinAcosBsin(B-A) is equal to

(sin ^(2) A - sin ^(2) B)/( sin A cos A - sin B cos B) is equal to

(sin^(2)A-sin^(2)B)/(sin A cos A-sin B cos B) is equal to (a) sin A cos A-sin B cos Btan(A-B)(b)tan(A+B)cot(A-B)(d)cot(A+B)

If A+B+C= pi and (sin 2 A + sin 2B + sin 2 C)/(sin A + sin B + sin C ) = lamda sin ((A)/(2)) sin ((B)/(2)) sin ((C )/(2)) , then the value of lamda must be

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

sin 2B = 2 sin B is true when B is equal to

(cos A+ cos B) ^(2) + (sin A-sin B) ^(2) is equal to