Home
Class 11
MATHS
y=sin^(-1)((5x+12sqrt(1-x^2))/(13))...

`y=sin^(-1)((5x+12sqrt(1-x^2))/(13))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

sin^(-1)x+sin^(-1)y=sin^(-1)(x sqrt(1-y^(2))+y sqrt(1-x^(2))) then find the area represented by the locus of point (x,y) if |x|<=1,|y|<=1

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

If y=cos^(-1){(2x-3sqrt(1-x^(2)))/(sqrt(13))}, find (dy)/(dx)