Home
Class 11
MATHS
If g is the inverse function of fa n df...

If `g` is the inverse function of `fa n df^(prime)(x)=sinx ,t h e ng^(prime)(x)` is (a)`cos e c{g(x)}` (b) `"sin"{g(x)}` (c)`-1/("sin"{g(x)})` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If g is inverse of function f and f'(x)=sinx , then g'(x) =

If g is the inverse function of and f'(x) = sin x then prove that g'(x) = cosec (g(x))

If g is the inverse of a function f and f'(x)=(1)/(1+x^(n)), g'(x) is equal to

g(x) is the inverse of function f(x), find (d^(2)f)/(dx^(2))(1),g(x)=x^(3)+e^((x)/(2))

g(x) is inverse function of f(x). find f'(x) or f'(1) if g(x)=x^(^^)3+e^(^^)(x/2)

Let g is the inverse function of fa n df^(prime)(x)=(x^(10))/((1+x^2)) . If g(2)=a , then g^(prime)(2) is equal to a/(2^(10)) (b) (1+a^2)/(a^(10)) (a^(10))/(1+a^2) (d) (1+a^(10))/(a^2)

g(x) is a inverse function of f.g(x)=x^(3)+e^((x)/(2)) then find the value of f'(x)

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>20

If g is the inverse of f and f'(x)=(1)/(1+x^(n)) prove that g'(x)=1+(g(x))^(n)