Home
Class 12
MATHS
Consider the cubic f(x)=8x^3+4a x^2+2b x...

Consider the cubic `f(x)=8x^3+4a x^2+2b x+a` where `a , b\ in Rdot` For `a=1\ ` if `y=f(x)` is strictly increasing `AA\ x\ in R` then maximum range of values of `b` is `(-oo,1/3]` (b) `(1/3,\ oo)` `[1/3,\ oo)` (d) `(-oo,\ oo)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    BANSAL|Exercise All Questions|425 Videos

Similar Questions

Explore conceptually related problems

Range of vlaues of f(x) is (A) (-oo, 3/4] (B) [ 3/4, oo) (C) [ 1/3, 3] (D) none of these

If (x^(2)-x)/(1-ax) attains all real values (x in R) then possible value of a are (A) (-oo , 1) (B) (1, oo) (C) [1, oo) (D)(1, 2)

If e^(x)+e^(f(x))=e, then the range of f(x) is (-oo,1](b)(-oo,1)(1,oo)(d)[1,oo)

If cos^(2)x-(c-1)cos x+2c>=6 for every x in R, then the true set of values of c is (2,oo)(b)(4,oo)(c)(-oo,-2)(d)(-oo,-4)

If f(x)=(t+3x-x^(2))/(x-4), where t is a parameter that has minimum and maximum,then the range of values of t is (0,4)(b)(0,oo)(-oo,4)(d)(4,oo)

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

If f(x)=((a^(2)-1)/(3))x^(3)+(a-1)x^(2)+2x+1 is monotonically increasing for every x in R then a can lie in (A) (1,2) (B) (1,oo) (C) (-oo,-3) (D) (-10,-7)

If log_(3)(x^(2)-6x+11)<=1, then the exhaustive range of values of x is: (-oo,2)uu(4,oo)(b)(2,4)(-oo,1)uu(1,3)uu(4,oo)(d) none of these

BANSAL-APPLICATION OF DERIVATIVE-All Questions
  1. The lower corner of a leaf in a book is folded over so as to reach the...

    Text Solution

    |

  2. P is a point on positive x-axis, Q is a point on the positive y-...

    Text Solution

    |

  3. Consider the cubic f(x)=8x^3+4a x^2+2b x+a where a , b\ in Rdot For...

    Text Solution

    |

  4. For b=1,\ if y=f(x)=8x^3+4x^2+2bx+1 is non monotonic then the sum o...

    Text Solution

    |

  5. If the sum of the base 2 logarithms of the roots of the cubic f(x)= ...

    Text Solution

    |

  6. Consider the function f(x)=x^(30)dot(lnx)^20 for x >0 If f is continu...

    Text Solution

    |

  7. Maximum value of f(x)=(lnx)^20.x^30 occurs at x=-2/3 (b) x=1 x=e^(-2...

    Text Solution

    |

  8. Consider the function f(x)a n d\ g(x) such that f(x)=(x^3)/2+1-x\ i...

    Text Solution

    |

  9. consider a function f(x) Minimum distance between the functions f(x)...

    Text Solution

    |

  10. Let f(x) be a real valued continuous function on R defined as f(x)=...

    Text Solution

    |

  11. Consider the function f(x) and g(x) such that f(x)=x^2/2+1-x+intg(x)dx...

    Text Solution

    |

  12. let f(x)=(x^2-1)^n (x^2+x-1) then f(x) has local minimum at x=1 when

    Text Solution

    |

  13. An extremum value of y=int0^x(t-1)(t-2)dt is : 5/6 (b) 2/3 (c) 1 ...

    Text Solution

    |

  14. The function f(x)=int(-1)^x t(e^t-1)(t-1)(t-2)^3(t-3)^5dt has a local ...

    Text Solution

    |

  15. A function f: R-&gt;R is such that f^(prime)(x)=0 at x=0\ a n d\ x=...

    Text Solution

    |

  16. The least value of a for which the equation 4/(sinx)+1/(1-sinx)=a ha...

    Text Solution

    |

  17. A closed vessel tapers to a point both at its top E and its bottom ...

    Text Solution

    |

  18. If Rolle's theorems applicable to the function f(x)=ln x/x, (x> 0) ove...

    Text Solution

    |

  19. Let f(x)={x^(3/5),ifxlt=1and (x-2)^3,ifx &gt;1 Then the number of c...

    Text Solution

    |

  20. Number of real solution of the equation, log2^2(x)+(x-1)log2(x)=6-2x, ...

    Text Solution

    |