Home
Class 11
MATHS
If f(x)=x+tanxa n df is the inverse of ...

If `f(x)=x+tanxa n df` is the inverse of `g,` then `g^(prime)(x)` equals (a)`1/(1+[g(x)-x]^2)` (b) `1/(2-[g(x)-x]^2)` (c)`1/(2+[g(x)-x]^2)` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+tan x and f(x) is inverse of g(x), then g'(x) is equal to (1)/(1+(g(x)-x)^(2)) (b) (1)/(1+(g(x)+x)^(2))(1)/(2-(g(x)-x)^(2)) (d) (1)/(2+(g(x)-x)^(2))

If f(x)=x^(5)+2x^(3)+2x and g is the inverse of f then g'(-5) is equal to

If f(x)=2x+tan x and g(x) is the inverse of f(x) then value of g'((pi)/(2)+1) is

If f(x)=x+tan x and g(x) is inverse of f(x) then g'(x) is equal to (1)(1)/(1+(g(x)-x)^(2))(2)(1)/(1-(g(x)-x)^(2))(1)/(2+(g(x)-x)^(2))(4)(1)/(2-(g(x)-x)^(2))

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to- (1)/(4)(b)0 (c) (1)/(3)(d)4

Let f(x)=x^(2)-x+5,x>(1)/(2) and g(x) is its inverse function,then g'(7) equals

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to a.(1)/(4) b.0 c.(1)/(3) d.4

If g is the inverse of f and f'(x)=(1)/(2+x^(n)) then g'(x) is equal to A.2+x^(n) B.2+[f(x)]^(n) C.2+[g(x)]^(n) D.2-[g(x)]^(n)

If g is the inverse of f and f'(x)=(1)/(2+x^(n)) , then g'(x) is equal to

If g is the inverse of f and f'(x)=(1)/(1+x^(n)) prove that g'(x)=1+(g(x))^(n)