Home
Class 11
PHYSICS
Find the relative error in Z, if Z=A^(4)...

Find the relative error in Z, if `Z=A^(4)B^(1//3)//CD^(3//2)`.

A

`(DeltaZ)/(Z)=4(DeltaA)/(A)+(1)/(3)(DeltaB)/(B)+(DeltaC)/(C)+(3)/(2)(DeltaD)/(D)`

B

`(DeltaZ)/(Z)=4(DeltaA)/(A)+(1)/(3)(DeltaB)/(B)-(DeltaC)/(C)-(3)/(2)(DeltaD)/(D)`

C

`(DeltaZ)/(Z)=4(DeltaA)/(A)+(1)/(3)(DeltaB)/(B)+(DeltaC)/(C)-(3)/(2)(DeltaD)/(D)`

D

`(DeltaZ)/(Z)=4(DeltaA)/(A)+(1)/(3)(DeltaB)/(B)-(DeltaC)/(C)+(3)/(2)(DeltaD)/(D)`

Text Solution

Verified by Experts

The correct Answer is:
A

`Z=(A^(4)B^(1//3))/(CD^(3//2))`. The relative error in Z is given by
`(DeltaZ)/(Z)=4(DeltaA)/(A)+(1)/(3)(DeltaB)/(B)+(DeltaC)/(C)+(3)/(2)(DeltaD)/(D)`
Promotional Banner

Topper's Solved these Questions

  • UNITS AND MEASUREMENTS

    NCERT FINGERTIPS|Exercise Significant Figures|10 Videos
  • UNITS AND MEASUREMENTS

    NCERT FINGERTIPS|Exercise Dimensions Of Physical Quantities|6 Videos
  • UNITS AND MEASUREMENTS

    NCERT FINGERTIPS|Exercise Measurement Of Mass|9 Videos
  • THERMODYNAMICS

    NCERT FINGERTIPS|Exercise Assertion And Reason|15 Videos
  • WAVES

    NCERT FINGERTIPS|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

If Z=(A^(4)B^(1/3))/(CD^(3/2)) ,than relative error in Z (Delta Z)/(Z) is equal to (a) ((Delta A)/(A))^(4)+((Delta B)/(B))^(1/3)-((Delta C)/(C))-((Delta D)/(D))^(3/2) (b) 4((Delta A)/(A))+((1)/(3))((Delta B)/(B))+((Delta C)/(C))+((3)/(2))((Delta D)/(D)) (c) 4((Delta A)/(A))+(1)/(3)((Delta B)/(B))-((Delta C)/(C))-((3)/(2))((Delta D)/(D)) (d) ((Delta A)/(A))^(4)+(1)/(3)((Delta B)/(B))+((Delta C)/(C))+(3)/(2)((Delta D)/(D))

Given w = - 2, x = 3, y = 0 & z = - (1)/(2) . Find the value of (z)/(w) + x . A. 3 (1)/(4) B. - 3 (1)/(4) C. 3.2 D. 3.5

Find the relation if z_(1),z_(2),z_(3),z_(4) are the affixes of the vertices of a parallelogram taken in order.

For physical quantity z, given by expression z=(gh^(1"/"2)I)/(mx^3) , write the expression for relative error in it.

find z . 5-2((z-4)/3) =1/2(2z +3)

If z^(2)+(1)/(z^(2))=14, find the value of z^(3)+(1)/(z^(3))

Find the value of (( x -y )^3 + ( y - z )^3 + ( z - x )^3 )/ (9 ( x - y )( y - z ) ( z - x )) 1 . 0 2 . 1/9 3 . 1/3 4. 1

Find the minimum value of |z-1 if |z-3|-|z+1||=2

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If |z_(1)|=|z_(2)|=|z_(3)|=1 and z_(1)+z_(2)+z_(3)=0 then the area of the triangle whose vertices are z_(1),z_(2),z_(3) is 3sqrt(3)/4b.sqrt(3)/4c.1d.2