Home
Class 12
MATHS
If f(x) = cos [pi]x + cos [pi x], where ...

If `f(x) = cos [pi]x + cos [pi x]`, where `[y]` is the greatest integer function of y then `f(pi/2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi/x] cos(pi/2(x-1)) ; where [x] is the greatest integer function of x ,then f(x) is continuous at :

If f(x)=cos[pi/x] cos(pi/2(x-1)) ; where [x] is the greatest integer function of x ,then f(x) is continuous at :

If f(x)=cos[pi/x] cos(pi/2(x-1)) ; where [x] is the greatest integer function of x ,then f(x) is continuous at :

If f(x)=cos([pi^2|x)+cos([-pi^2|x) , where [x] stands for the greatest integer function, then

If f(x)= cos [pi ^(2) ] x+ cos [-pi ^(2) ] x, where [x] stands for the greatest integer functions , then

If f(x)=cos[(pi)/(x)]cos((pi)/(2)(x-1)); where [x] is the greatest integer function of x, then f(x) is continuous at :