Home
Class 11
MATHS
In A B C ,(sinA(a-bcosC)/(sinC(c-bcosA)...

In ` A B C ,(sinA(a-bcosC)/(sinC(c-bcosA)=` `-2` (b) `-1` (c) `0` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

In A B C ,(sinA(a-bcosC))/(sinC(c-bcosA) = (a) -2 (b) -1 (c) 0 (d) 1

A+C=2B then (cosC-cosA)/(sinA-sinC)=

In a triangle ABC , if a,b,c are the sides opposite to angles A , B , C respectively, then the value of |{:(bcosC,a,c cosB),(c cosA,b,acosC),(acosB,c,bcosA):}| is (a) 1 (b) -1 (c) 0 (d) acosA+bcosB+c cosC

If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

If A+B+C=pi , then sinA-sinB+sinC=

In A B C , if (sinA)/(csinB)+(sinB)/c+(sinC)/b=c/(a b)+b/(a c)+a/(b c), then the value of angle A is 120^0 (b) 90^0 (c) 60^0 (d) 30^0

In A B C , if (sinA)/(csinB)+(sinB)/c+(sinC)/b=c/(a b)+b/(a c)+a/(b c), then the value of angle A is 120^0 (b) 90^0 (c) 60^0 (d) 30^0

In A B C , if (sinA)/(csinB)+(sinB)/c+(sinC)/b=c/(a b)+b/(a c)+a/(b c), then the value of angle A is (a) 120^0 (b) 90^0 (c) 60^0 (d) 30^0

In A B C , if (sinA)/(csinB)+(sinB)/c+(sinC)/b=c/(a b)+b/(a c)+a/(b c), then the value of angle A is 120^0 (b) 90^0 (c) 60^0 (d) 30^0