Home
Class 11
MATHS
If u=x^2 and x=s+3t, y=2s-t, then (d^2u)...

If `u=x^2 and x=s+3t, y=2s-t,` then `(d^2u)/(ds^2)` is (a) `5/2 t` (b) `20t^8` (c) `5/(16t^6)` (d) non of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If u = x^(2) + y^(2) " and " x = s + 3t, y = 2s - t , " then " (d^(2) u)/(ds^(2)) is equal to

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

x=t cos t,y=t+sin t. Then (d^(2)tau)/(dy^(2)) at t=(pi)/(2) is (pi+4)/(2)(b)-(pi+4)/(2)-2(d) none of these

If x=2t-3t^(2) and y=6t^(3) then (dy)/(dx) at point (-1,6) is

If x=t^(2),y=t^(3), then (d^(2)y)/(dx^(2))=(a)(3)/(2)(b)(3)/((4t)) (c) (3)/(2(t)) (d) (3t)/(2)

x=f(t) satisfies (d^2x)/dt^2=2t+3 and for t=0, x=0, dx/dt=0 , then f(t) is given by (A) t^3+t^2/2+t (B) (2t^3)/3+(3t^2)/2+t (C) t^3/3+(3t^2)/2 (D) none of these