Home
Class 11
MATHS
If y=sinx+e^x ,t h e n(d^2x)/(dy^2)= ...

If `y=sinx+e^x ,t h e n(d^2x)/(dy^2)=` (a)`(-sinx+e^x)^(-1)` (b)`(sinx-e^x)/((cosx+e^x)^2)` (c) `(sinx-e^x)/((cosx+e^x)^3)` (d) `(sinx+e^x)/((cosx+e^x)^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sinx+e^(x), Then find (dy)/(dx) .

If y=sinx+e^(x)," then "(d^(2)x)/(dy^(2)) equals

(e^(x))/(sinx)

y = sinx.e^x . Find dy/dx

e^(sinx)sin(e^(x))

int e^sinx cosx dx

I=int(e^(x)+e^(-x)+(e^(x)-e^(-x))sin x)/(1-cosx)

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y=e^(x) sinx then calculate (dy)/(dx)

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.