Home
Class 11
MATHS
If y^(1/m)=(x+sqrt(1+x^2)),t h e n(1+x^2...

If `y^(1/m)=(x+sqrt(1+x^2)),t h e n(1+x^2)y_2+x y_1` is (where `y_r` represents the `r t h` derivative of `y` w.r.t. `xdot` (a)`m^2y` (b) `m y^2` (c) `m^2y^2` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y_(2)+xy_(1) is (where y_(r) represents the rth derivative of y w.r.t. x)

If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y_(2)+ xy _(1) = ?

The derivative of y=x^(2^(x)) w.r.t. x is

The derivative of y = x^2logx w.r.t. x is :

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If y=x-x^(2), then the derivative of y^(2)w.r.t.x^(2) is

If y=e^(m sin^(-1)x) then prove that (1-x^2) y_2 - xy_1 = m^2 y

If y=x-x^(2), then the derivative of y^(2) w.r.t x^(2) is

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0