Home
Class 11
MATHS
Let f(x+y)=f(x)dotf(y) for all xa n dydo...

Let `f(x+y)=f(x)dotf(y)` for all `xa n dydot` Suppose `f(5)=2a n df^(prime)(0)=3.` Find `f^(prime)(5)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)f(y) for all x and y . Suppose f(5)=2 and f^(prime)(0)=3 , find f^(prime)(5) .

f(x+y)=f(x)*f(y) for all x,y anf f(5)=2,f'(0)=3 then f(5) will be

Let f(x+y)=f(x)f(y) for all x,y in R suppose that f(3)=3,f(0)!=0 and f'(0)=11, then f'(3) is equal

Let f(x+y)=f(x)*f(y) for all x y where f(0)!=0 .If f(5)=2 and f'(0)=3 then f'(5) is equal to

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

Let the function f satisfies f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) foe all x and f(0)=3 The value of f(x).f^(prime)(-x)=f(-x).f^(prime)(x) for all x, is