Home
Class 11
MATHS
A function f satisfies the condition f(...

A function `f` satisfies the condition `f(x)=f^(prime)(x)+f^(primeprime)(x)+f^(primeprimeprime)(x)`...... ,where f(x) is a differentiable function indefinitely and dash denotes the order of derivative. If `f(0)=1,t h e nf(x)` is (A)`e^(x/2)` (B) `e^x` (C) `e^(2x)` (D) `e^(4x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f satisfies the condition f(x)=f'(x)+f''(x)+f''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

The derivative of f(x) = e^(e^(x^(2))) is

The function f(x)=e^(-|x|) is

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

The function f(x) = e^(|x|) is

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

If f(x) is a polynomial of nth degree then int e^(x)f(x)dx= Where f^(n)(x) denotes nth order derivative of f(x)w.r.t.x