Home
Class 11
MATHS
" Prove that: "sin^(2)A=cos^(2)(A-B)+cos...

" Prove that: "sin^(2)A=cos^(2)(A-B)+cos^(2)B-2cos(A-B)cos A cos B

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^2 A=cos^2 (A-B)+ cos^2 B-2 cos (A - B) cos A cos B .

Prove that: sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot

Prove the following that: sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.

If A+B+C=2 pi, then prove that cos^(2)B+cos^(2)C-sin^(2)A=2cos A cos B cos C

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)