Home
Class 12
MATHS
y=tan^(-2)[(sqrt(1+x)+sqrt(1-x))/(sqrt(1...

y=tan^(-2)[(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

y = tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))),find dy/dx.

If y = tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) then dy/dx =

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x+sqrt(1-x)))]=(pi)/(4)-(1)/(2)cos^(-1)x,quad -(1)/(sqrt(2))<=x<=1