Home
Class 12
MATHS
Let f(x) = ax^(2) + bx + c, a != 0 and D...

Let `f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac`. If `alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3)` are in GP, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x)=a x^(2)+b x+c , a ne 0 and Delta=b^(2)-4 a c . If alpha+beta, alpha^(2)+beta^(2) and alpha^(3)+beta^(3) are in G.P, then

Let f(x)=ax^2 + bx+c whose roots are alpha and beta , a ne 0 and triangle=b^2-4ac . If alpha + beta , alpha^2 + beta^2 and alpha^3 + beta^3 are in GP then :

Let f(x)=ax^2 + bx+c whose roots are alpha and beta , a ne 0 and triangle=b^2-4ac . If alpha + beta , alpha^2 + beta^2 and alpha^3 + beta^3 are in GP then :

In the quadratic equation ax^2 + bx + c = 0 , if Delta = b^2-4ac and alpha + beta, alpha^2 + beta^2, alpha^3 + beta^3 are in GP. where alpha, beta are the roots of ax^2 + bx + c =0 , then

In the quadratic equation ax^(2)+bx+c=0, if fDelta=b^(2)-4ac and alpha+beta,alpha^(2)+beta^(2),alpha^(3)+beta^(3) are in GP.where alpha,beta are the roots of ax^(2)+bx+c=0, then

In the quadratic equation ax^2 + bx + c = 0 . if delta = b^2-4ac and alpha+beta , alpha^2+beta^2 , alpha^3+beta^3 are in G.P. and alpha,beta are the roots of ax^2 + bx + c =0

Let alpha,beta be the roots of the quadratic equation ax^(2)+bx+c=0and=b^(2)-4a*If alpha+beta,alpha^(2)+beta^(2)alpha^(3)+beta^(3) are in G.P.Then a.=0 b.!=0 c.b=0 d.c=0

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0and Delta =b^2-4ac cdotIfalpha+beta,alpha^2+beta^2,alpha^3+beta^3 are in G.P. Then a. Delta!=0 b. bDelta=0 c. cDelta =0 d. Delta =0