Home
Class 12
MATHS
D(tan(tan^(-1)x))=...

`D(tan(tan^(-1)x))=`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

D(tan^(-1)x+tan^(-1)((1)/(x)))=

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that: tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

(d)/(dx)[sec(tan^(-1)x)]=

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to -e^(tan^(-1)x)+c(b)e^(tan^(-1)x)+c-xe^(tan^(-1)x)+c(d)xe^(tan-1)x+c

If tan^(-1)3+tan^(-1)x=tan^(-1)8 , then x= (a) 5 (b) 1//5 (c) 5//14 (d) 14//5

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=