Home
Class 12
MATHS
D(cos^4 (x/2) - sin^4 (x/2))...

`D(cos^4 (x/2) - sin^4 (x/2))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1

(d)/(dx)(cos (x/2))= (A) (1)/(2)sin(x)/(2) , (B) -(1)/(2)cos(x)/(2) (C) -(1)/(2)sin(x)/(2) , (D) -sin(x)/(4)

int ((4-5sin x) / (cos ^ (2) x) + (1) / (sin ^ (2) x cos ^ (2) x)) dx

cos^(2)x-2cos x=4sin x-sin2x

int(4cos^(2)x-3sin^(2)x)/(sin^(2)2x)d(4x)=

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

The value of (cos^(4)x+cos^(2)xsin^(2)x+sin^(2)x)/(cos^(2)x+sin^(2)xcos^(2)x+sin^(4)x) is __________.

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is