Home
Class 12
MATHS
If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx...

If `y=(x^4+x^2+1)/(x^2+x+1)` then `(dy)/(dx)=a x+b` , find `a` and `b`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) find (dy)/(dx) =

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

If y=[(x^(2)+1)/(x+1)] , then find (dy)/(dx) .

y=x^(2)+(1)/(x^(2)) . Find (dy)/(dx)

If x^2/a^2 - y^2/b^2 =1 then (dy)/(dx)=

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

If y = x^4 + x^2 , find (dy)/(dx) at x = 1 ?

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy)/(dx)=ax^(2)+bx+c then the value of a+b+c is

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy)/(dx)=ax^(2)+bx+c then the value of a+b+c is

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy)/(dx)= ax^(2)+bx+c then the value of a+b+c is