Home
Class 12
MATHS
If siny=xsin(a+y), prove that (dy)/(dx)=...

If `siny=xsin(a+y),` prove that `(dy)/(dx)=(sin^2(a+y))/(sina)`

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

(dy)/(dx)=sin^(2)y

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)