Home
Class 12
MATHS
Let f(x)={e^(x^2+x), x<0 and ax +b , x ...

Let `f(x)={e^(x^2+x), x<0 and ax +b , x leq0` Find a and b so that `f(x)` is continuous and has a derivative at `x = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=e^(x^(3)-x^(2)+x) be an invertible function such that f^(-1)=g ,then-

Let f(x)=int e^(x^(2))(x-2)(x-3)(x-4)dx then f increases on (k,k+1) then k is

Let f(x)=(e^(x))/(x^(2))x in R-{0}. If f(x)=k has two distinct real roots,then the range of k, is

Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+tan x)| then the value of int_(-pi/2)^(pi/2)(x^2+1)(f(x)+f''(x))dx

Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+tan x)| then the value of int_(-pi/2)^(pi/2)(x^2+1)(f(x)+f''(x))dx

Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+tan x)| then the value of int_(-pi/2)^(pi/2)(x^2+1)(f(x)+f''(x))dx

Let f'(x)=e^(x)^^2 and f(0)=10. If A

Let f(x)=[e^(x) (x-1)(x-2)] . Then f decrease in the interval :