Home
Class 12
MATHS
lim(x rarr5)(|x-5|)/(x-5)=...

lim_(x rarr5)(|x-5|)/(x-5)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that lim_(x rarr 5) (|x -5|)/(x-5) does not exists.

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

lim_(x rarr 5^(+)) (|x-5|)/(x-5)= ______.

Evaluate the following limit : lim_(x rarr 5) (e^x-e^5)/(x-5) .

lim_(x rarr0)(sin x)/(x+5)

Let 'f' and 'g' be twice differentiable functions on 'R' and f^(11)(5)=8,g^(11)(5)=2 then lim_(x rarr5)((f(x)-f(5)-(x-5)f^(1)(5))/(g(x)-g(5)-(x-5)g^(1)(5)))

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr1)((x+5)(x-1))/(x-1)

lim_(x rarr oo) ((x-5)(x+7))/((x+2)(5x+1))= _______.