Home
Class 10
MATHS
12.tan^(2)A-sin^(2)A=sin^(2)A tan^(2)A...

12.tan^(2)A-sin^(2)A=sin^(2)A tan^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that tan^(2)A-sin^(2)A=tan^(2)A*sin^(2)A

Prove : (1-cos^(2)A) *sec ^(2)B + tan^(2)B (1- sin^(2)A) = sin^(2) A + tan^(2)B

Prove that sin^(2) A+ sin^(2) A tan^(2) A = tan^(2) A .

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)

Prove the following identities : tan^(2) A - sin^(2) A = tan^(2) A . sin^(2) A

tan ^ (2) A-sin ^ (2) A = sin ^ (4) A sec ^ (4) A = tan ^ (2) A sin ^ (2) A

(tan ^ (2) A sin ^ (2) A) / (tan ^ (2) A-sin ^ (2) A) = 1

Show that: tan(A+B).tan(A-B)=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B).

Prove: (1-cos^2 A)cdot sec^2B + tan^2B (1-sin^2A) = sin^2A+tan^2B .

cos ^ (2) A-sin ^ (2) A = (1-tan ^ (2) A) / (1 + tan ^ (2) A)