Home
Class 13
MATHS
8cos x[cos((pi)/(6)+n)cos((pi)/(8)-n)-(1...

8cos x[cos((pi)/(6)+n)cos((pi)/(8)-n)-(1)/(2)]=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of all the solutions of the equation 8cos x*(cos((pi)/(6)+x)cos((pi)/(6)-x)-(1)/(2))=1 in [0,pi] is k pi then k is equal to

The value of cos((pi)/(4))*cos((pi)/(8))*cos((pi)/(16))cos((pi)/(2^(n))) equals

Prove that, sin((8pi)/(3))cos((23pi)/(6))+cos((13pi)/(3))sin((35pi)/(6))=(1)/(2)

Show that (1+ cos. (pi)/(8))(1+cos. (3pi)/(8))(1+ cos. (5pi)/(8))(1+ cos .(7pi)/(8))=(1)/(8)

Prove that: (1+cos(pi)/(8))(1+cos(3 pi)/(8))(1+cos(5 pi)/(8))(1+cos(7 pi)/(8))=(1)/(8)

The expression [(1+sin((pi)/(8))+i cos((pi)/(8)))/(1+sin((pi)/(8))-i cos((pi)/(8)))]^(8)

Prove that: cos(pi)/(7)cos(2 pi)/(7)cos(4 pi)/(7)=-(1)/(8)

The value of (1+cos (pi)/(8))(1+cos (3 pi)/(8))(1+cos (5 pi)/(8))(1+cos (7 pi)/(8)) is