Home
Class 9
MATHS
Evaluate 3.bar(2)-0.bar(16)...

Evaluate `3.bar(2)-0.bar(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( 3.\overline{2} - 0.\overline{16} \), we first need to convert the repeating decimals into fractions. ### Step 1: Convert \( 3.\overline{2} \) to a fraction Let \( x = 3.\overline{2} \). To eliminate the repeating part, we can multiply by 10 (since the repeating part is one digit long): \[ 10x = 32.\overline{2} \] Now, we subtract the original equation from this new equation: \[ 10x - x = 32.\overline{2} - 3.\overline{2} \] \[ 9x = 32 - 3 \] \[ 9x = 29 \] \[ x = \frac{29}{9} \] Thus, \( 3.\overline{2} = \frac{29}{9} \). ### Step 2: Convert \( 0.\overline{16} \) to a fraction Let \( y = 0.\overline{16} \). To eliminate the repeating part, we can multiply by 100 (since the repeating part is two digits long): \[ 100y = 16.\overline{16} \] Now, we subtract the original equation from this new equation: \[ 100y - y = 16.\overline{16} - 0.\overline{16} \] \[ 99y = 16 \] \[ y = \frac{16}{99} \] Thus, \( 0.\overline{16} = \frac{16}{99} \). ### Step 3: Perform the subtraction Now we can subtract the two fractions: \[ 3.\overline{2} - 0.\overline{16} = \frac{29}{9} - \frac{16}{99} \] To subtract these fractions, we need a common denominator. The least common multiple of 9 and 99 is 99. Convert \( \frac{29}{9} \) to have a denominator of 99: \[ \frac{29}{9} = \frac{29 \times 11}{9 \times 11} = \frac{319}{99} \] Now we can subtract: \[ \frac{319}{99} - \frac{16}{99} = \frac{319 - 16}{99} = \frac{303}{99} \] ### Step 4: Simplify the fraction Now we simplify \( \frac{303}{99} \): \[ \frac{303 \div 3}{99 \div 3} = \frac{101}{33} \] ### Final Answer Thus, the final answer is: \[ 3.\overline{2} - 0.\overline{16} = \frac{101}{33} \]

To evaluate \( 3.\overline{2} - 0.\overline{16} \), we first need to convert the repeating decimals into fractions. ### Step 1: Convert \( 3.\overline{2} \) to a fraction Let \( x = 3.\overline{2} \). To eliminate the repeating part, we can multiply by 10 (since the repeating part is one digit long): \[ 10x = 32.\overline{2} ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate 2.bar(6)+0.bar(9)

Evaluate : 2.bar(5)-0.bar(35)

Evaluate : 1.bar(45)+0.bar(3)

Evaluate 0.bar(68) +0.bar(73) .

Evaluate : 2.bar(7)+1.bar(3)

Evaluate 0.bar(65) + 2.bar(61) .

The value of 0.bar(2)+0.bar(3) +0.bar(4)+0.bar(9) +0.bar(39) is

Find the value of 2.bar(6)-0.bar(9) .

The value of 0.bar(3) + 0.bar(6) + 0. bar( 7 ) + 0. bar( 8 ) in fraction will be