Home
Class 11
MATHS
Find (dy)/(dx) for y=sin^(-1)(cosx), whe...

Find `(dy)/(dx)` for `y=sin^(-1)(cosx),` where `x in (0,2pi)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

Find (dy)/(dx) for y=tan^(-1){(1-cos x)/(sin x)},-pi

Find (dy)/(dx) where (i) y=(cosx log x)

Find the (dy)/(dx) of y=cos^(-1)sqrt((1+cosx)/2)

Find (dy)/(dx) if y=tan^(-1)((sqrt(1+x^(2)-1))/(x)), where x!=0

Find (dy)/(dx) , where y = (x + 1)^(2x) .

(x(dy)/(dx)+y)sin(xy)=cosx, where xy=u

"if y"="cos"^(-1)((5"cos" x-12 "sin"x)/(13)), where x in (0,(pi)/(2)) , " then "(dy)/(dx) " is"-