Home
Class 9
MATHS
Compare the surds (i) A=sqrt(10)-sqrt(...

Compare the surds
(i) `A=sqrt(10)-sqrt(5),B=sqrt(19)-sqrt(14)`
(ii) `P=sqrt(10)+sqrt(5),Q=sqrt(8)+sqrt(7)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

(i) `A=sqrt(10)-sqrt(5)=((sqrt(10)-sqrt(5))(sqrt(10)+sqrt(5)))/(sqrt(10)+sqrt(5))=(10-5)/(sqrt(10)+sqrt(5))=(5)/(sqrt(10)+sqrt(5))` . . .(1)
`B=sqrt(19)-sqrt(14)=((sqrt(19)-sqrt(14))(sqrt(19)+sqrt(14)))/(sqrt(19)+sqrt(14))=(19-14)/(sqrt(19)+14)=(5)/(sqrt(19+sqrt(14))` . . . (2)
The numerator of each A and B is same i.e., 5. But denominator
`sqrt(19)+sqrt(14)gtsqrt(10)+sqrt(5)`
`:.(1)/(sqrt(19)+sqrt(14))lt(1)/(sqrt(10)+sqrt(5))`
`rArr(5)/(sqrt(19)+sqrt(14))lt(5)/(sqrt(10)+sqrt(5))`
`rArr(5)/(sqrt(19)-sqrt(14))lt(5)/(sqrt(10)-sqrt(5))` [from (1) and (2)]
(ii) Since there is a positive sign in
`P=sqrt(10)+sqrt(5)andQ=sqrt(8)+sqrt(7)`
`:."Squaring P and Q, we get"`
`P^(2)=105+2sqrt(50)=15+2sqrt(50)`
`Q^(2)=8+5+2sqrt(56)=15+2sqrt(56)`
As `sqrt(56)gtsqrt(50)" "rArr" "2sqrt(56)gt2sqrt(50)" "rArr" "15+2sqrt(56)gt15+2sqrt(50)`
`rArrQ^(2)gtP^(2)" "rArr" "QgtP" "rArr" "sqrt(8)+sqrt(7)gtsqrt(10)+sqrt(5)`
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Compare the surds A=sqrt(8)+sqrt(7) and B=sqrt(10)+sqrt(5)

Compare the surds : 6sqrt(2) , 5sqrt(3)

Compare the surds : 6sqrt6 and 10sqrt2 .

Which of the following surd is the smallest ? sqrt(10)-sqrt(5),sqrt(19)-sqrt(14),sqrt(22)-sqrt(17) and sqrt(8)-sqrt(3)

Write the following surds in decending order of their magnitudes : (i)3sqrt(2),6sqrt(3),9sqrt(4)" "(ii)3sqrt(3),4sqrt(5),sqrt(2),6sqrt(10)

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

Simplify by raationalising the denominator. (i) (7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)) (ii) (2sqrt(6) -sqrt(5))/(3sqrt(5)-2sqrt(6))

(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5) Is equal to

Identify the following types of surds : (a) sqrt(6)+5sqrt(3)" "(b)sqrt(15)+sqrt(8)-sqrt(11) " "(c)sqrt(5)" "(d) 5+sqrt(7)