Home
Class 9
MATHS
Evaluate : 1.bar(45)+0.bar(3)...

Evaluate :
`1.bar(45)+0.bar(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(1.\overline{45} + 0.\overline{3}\), we will follow these steps: ### Step 1: Convert \(1.\overline{45}\) into a fraction Let \(x = 1.\overline{45}\). To eliminate the repeating decimal, we multiply \(x\) by 100 (since there are 2 digits repeating): \[ 100x = 145.\overline{45} \] Now, we can set up the equation: \[ 100x - x = 145.\overline{45} - 1.\overline{45} \] This simplifies to: \[ 99x = 144 \] Now, divide both sides by 99: \[ x = \frac{144}{99} \] ### Step 2: Simplify \(\frac{144}{99}\) To simplify \(\frac{144}{99}\), we can divide both the numerator and the denominator by their greatest common divisor (GCD), which is 9: \[ x = \frac{144 \div 9}{99 \div 9} = \frac{16}{11} \] ### Step 3: Convert \(0.\overline{3}\) into a fraction Let \(y = 0.\overline{3}\). To eliminate the repeating decimal, we multiply \(y\) by 10 (since there is 1 digit repeating): \[ 10y = 3.\overline{3} \] Now, we can set up the equation: \[ 10y - y = 3.\overline{3} - 0.\overline{3} \] This simplifies to: \[ 9y = 3 \] Now, divide both sides by 9: \[ y = \frac{3}{9} = \frac{1}{3} \] ### Step 4: Add the two fractions Now we have: \[ 1.\overline{45} + 0.\overline{3} = \frac{16}{11} + \frac{1}{3} \] To add these fractions, we need a common denominator. The least common multiple (LCM) of 11 and 3 is 33. Convert each fraction: \[ \frac{16}{11} = \frac{16 \times 3}{11 \times 3} = \frac{48}{33} \] \[ \frac{1}{3} = \frac{1 \times 11}{3 \times 11} = \frac{11}{33} \] Now, add the fractions: \[ \frac{48}{33} + \frac{11}{33} = \frac{48 + 11}{33} = \frac{59}{33} \] ### Final Answer Thus, the value of \(1.\overline{45} + 0.\overline{3}\) is \(\frac{59}{33}\). ---

To evaluate the expression \(1.\overline{45} + 0.\overline{3}\), we will follow these steps: ### Step 1: Convert \(1.\overline{45}\) into a fraction Let \(x = 1.\overline{45}\). To eliminate the repeating decimal, we multiply \(x\) by 100 (since there are 2 digits repeating): \[ 100x = 145.\overline{45} ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1c|14 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1d|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate : 2.bar(5)-0.bar(35)

Evaluate 0.bar(68) +0.bar(73) .

The value of 0.bar(45)+ 0.bar(36) is

Evaluate 0.bar(65) + 2.bar(61) .

Evaluate .23bar(45) .

Evaluate : 2.bar(7)+1.bar(3)

Evaluate 3.bar(2)-0.bar(16)

The value of 0.bar(57)-0.4bar(32)+0.3bar5 is:

Evaluate 2.bar(6)+0.bar(9)

The value of 0.bar(2)+0.bar(3) +0.bar(4)+0.bar(9) +0.bar(39) is