Home
Class 9
MATHS
Rationalise the denominator of each the ...

Rationalise the denominator of each the following
`(i)(2)/(sqrt(3))" "(ii)(1)/(3sqrt(5))" "(iii)(1)/(sqrt(8))" "(iv)(sqrt(2)+1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominators of the given expressions, we will follow a systematic approach for each part. Here’s the step-by-step solution: ### (i) Rationalizing \( \frac{2}{\sqrt{3}} \) 1. **Multiply numerator and denominator by \( \sqrt{3} \)**: \[ \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \] **Final answer**: \( \frac{2\sqrt{3}}{3} \) ### (ii) Rationalizing \( \frac{1}{3\sqrt{5}} \) 1. **Multiply numerator and denominator by \( \sqrt{5} \)**: \[ \frac{1}{3\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{3 \cdot 5} = \frac{\sqrt{5}}{15} \] **Final answer**: \( \frac{\sqrt{5}}{15} \) ### (iii) Rationalizing \( \frac{1}{\sqrt{8}} \) 1. **Multiply numerator and denominator by \( \sqrt{8} \)**: \[ \frac{1}{\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}} = \frac{\sqrt{8}}{8} \] 2. **Simplify \( \sqrt{8} \)**: \[ \sqrt{8} = 2\sqrt{2} \quad \text{(since \( 8 = 4 \times 2 \))} \] So, \[ \frac{\sqrt{8}}{8} = \frac{2\sqrt{2}}{8} = \frac{\sqrt{2}}{4} \] **Final answer**: \( \frac{\sqrt{2}}{4} \) ### (iv) Rationalizing \( \frac{\sqrt{2} + 1}{\sqrt{3}} \) 1. **Multiply numerator and denominator by \( \sqrt{3} \)**: \[ \frac{\sqrt{2} + 1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{(\sqrt{2} + 1)\sqrt{3}}{3} \] 2. **Distribute in the numerator**: \[ = \frac{\sqrt{6} + \sqrt{3}}{3} \] **Final answer**: \( \frac{\sqrt{6} + \sqrt{3}}{3} \) ### Summary of Answers: 1. \( \frac{2\sqrt{3}}{3} \) 2. \( \frac{\sqrt{5}}{15} \) 3. \( \frac{\sqrt{2}}{4} \) 4. \( \frac{\sqrt{6} + \sqrt{3}}{3} \)

To rationalize the denominators of the given expressions, we will follow a systematic approach for each part. Here’s the step-by-step solution: ### (i) Rationalizing \( \frac{2}{\sqrt{3}} \) 1. **Multiply numerator and denominator by \( \sqrt{3} \)**: \[ \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Shortanswer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1d|7 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Rationalize the denominator of the following: (1)/(3+sqrt(2)-3sqrt(3))

Rationalise the denominator of each of the following (3)/(sqrt(5)) (ii) (3)/(2sqrt(5))

Rationalise the denominator of each of the following (1)/(sqrt(12))( ii) (sqrt(2))/(sqrt(5))

Rationalise the denominator of each of the following 3/(sqrt3+sqrt5-sqrt2)

Rationalise the denominator of each the of the following : (i)(1)/(3+sqrt(5))" "(ii)(1)/(sqrt(5)-sqrt(3))" "(iii)(16)/(sqrt(41)+5)" "(iv)(30)/(5sqrt(3)+3sqrt(5))" "(v)(3-2sqrt(2))/(3+2sqrt(2))

Rationalise the denominator in each of the following : (2)/(7) (ii) (2)/(3sqrt(3)) (iii) (2sqrt(7))/(sqrt(11))

Rationalise the denominator of 1/(5+2sqrt3)

Rationalise the denominator in each of the following: (2)/(sqrt(7)) (ii) (2)/(3sqrt(3)) (iii) (2sqrt(7))/(sqrt(11))

Rationalise the denominator of (2)/(sqrt(3))

Rationalise the denominator of (2)/(sqrt(3))