Home
Class 9
MATHS
Simplify each of the following : (i)(s...

Simplify each of the following :
`(i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify each of the given expressions step by step. ### (i) Simplify \(\frac{\sqrt{2}+1}{\sqrt{2}-1} + \frac{\sqrt{2}-1}{\sqrt{2}+1}\) **Step 1:** Rationalize the first term \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\). To rationalize, multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{(\sqrt{2}+1)^2}{(\sqrt{2})^2 - (1)^2} \] **Step 2:** Calculate the numerator and denominator. Numerator: \[ (\sqrt{2}+1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} \] Denominator: \[ (\sqrt{2})^2 - (1)^2 = 2 - 1 = 1 \] So, \[ \frac{\sqrt{2}+1}{\sqrt{2}-1} = 3 + 2\sqrt{2} \] **Step 3:** Rationalize the second term \(\frac{\sqrt{2}-1}{\sqrt{2}+1}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2})^2 - (1)^2} \] **Step 4:** Calculate the numerator and denominator. Numerator: \[ (\sqrt{2}-1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] Denominator: \[ (\sqrt{2})^2 - (1)^2 = 2 - 1 = 1 \] So, \[ \frac{\sqrt{2}-1}{\sqrt{2}+1} = 3 - 2\sqrt{2} \] **Step 5:** Combine both results. Now, we can add the two simplified terms: \[ (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 6 \] **Final Answer for (i):** \(6\) --- ### (ii) Simplify \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} + \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\) **Step 1:** Rationalize the first term \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})} = \frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5})^2 - (\sqrt{3})^2} \] **Step 2:** Calculate the numerator and denominator. Numerator: \[ (\sqrt{5}+\sqrt{3})^2 = 5 + 2\sqrt{15} + 3 = 8 + 2\sqrt{15} \] Denominator: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] So, \[ \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} = \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15} \] **Step 3:** Rationalize the second term \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{(\sqrt{5}-\sqrt{3})^2}{(\sqrt{5})^2 - (\sqrt{3})^2} \] **Step 4:** Calculate the numerator and denominator. Numerator: \[ (\sqrt{5}-\sqrt{3})^2 = 5 - 2\sqrt{15} + 3 = 8 - 2\sqrt{15} \] Denominator: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] So, \[ \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{8 - 2\sqrt{15}}{2} = 4 - \sqrt{15} \] **Step 5:** Combine both results. Now, we can add the two simplified terms: \[ (4 + \sqrt{15}) + (4 - \sqrt{15}) = 8 \] **Final Answer for (ii):** \(8\) --- ### (iii) Simplify \(\frac{2}{\sqrt{5}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{2}} - \frac{3}{\sqrt{5}+\sqrt{2}}\) **Step 1:** Rationalize the first term \(\frac{2}{\sqrt{5}+\sqrt{3}}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{2(\sqrt{5}-\sqrt{3})}{5 - 3} = \frac{2(\sqrt{5}-\sqrt{3})}{2} = \sqrt{5} - \sqrt{3} \] **Step 2:** Rationalize the second term \(\frac{1}{\sqrt{3}+\sqrt{2}}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{1(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \frac{\sqrt{3}-\sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2} \] **Step 3:** Rationalize the third term \(-\frac{3}{\sqrt{5}+\sqrt{2}}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ -\frac{3(\sqrt{5}-\sqrt{2})}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})} = -\frac{3(\sqrt{5}-\sqrt{2})}{5 - 2} = -\frac{3(\sqrt{5}-\sqrt{2})}{3} = -(\sqrt{5}-\sqrt{2}) = -\sqrt{5} + \sqrt{2} \] **Step 4:** Combine all the results. Now, we can add: \[ (\sqrt{5} - \sqrt{3}) + (\sqrt{3} - \sqrt{2}) + (-\sqrt{5} + \sqrt{2}) \] **Step 5:** Simplify the expression. \[ \sqrt{5} - \sqrt{5} - \sqrt{3} + \sqrt{3} - \sqrt{2} + \sqrt{2} = 0 \] **Final Answer for (iii):** \(0\) --- ### (iv) Simplify \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} - \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\) **Step 1:** Rationalize the first term \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(\sqrt{7}+\sqrt{5})(\sqrt{7}+\sqrt{5})}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})} = \frac{(\sqrt{7}+\sqrt{5})^2}{(\sqrt{7})^2 - (\sqrt{5})^2} \] **Step 2:** Calculate the numerator and denominator. Numerator: \[ (\sqrt{7}+\sqrt{5})^2 = 7 + 2\sqrt{35} + 5 = 12 + 2\sqrt{35} \] Denominator: \[ (\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2 \] So, \[ \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} = \frac{12 + 2\sqrt{35}}{2} = 6 + \sqrt{35} \] **Step 3:** Rationalize the second term \(\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\). Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(\sqrt{7}-\sqrt{5})(\sqrt{7}-\sqrt{5})}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})} = \frac{(\sqrt{7}-\sqrt{5})^2}{(\sqrt{7})^2 - (\sqrt{5})^2} \] **Step 4:** Calculate the numerator and denominator. Numerator: \[ (\sqrt{7}-\sqrt{5})^2 = 7 - 2\sqrt{35} + 5 = 12 - 2\sqrt{35} \] Denominator: \[ (\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2 \] So, \[ \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} = \frac{12 - 2\sqrt{35}}{2} = 6 - \sqrt{35} \] **Step 5:** Combine both results. Now, we can subtract: \[ (6 + \sqrt{35}) - (6 - \sqrt{35}) = 6 + \sqrt{35} - 6 + \sqrt{35} = 2\sqrt{35} \] **Final Answer for (iv):** \(2\sqrt{35}\) ---

Let's simplify each of the given expressions step by step. ### (i) Simplify \(\frac{\sqrt{2}+1}{\sqrt{2}-1} + \frac{\sqrt{2}-1}{\sqrt{2}+1}\) **Step 1:** Rationalize the first term \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\). To rationalize, multiply the numerator and the denominator by the conjugate of the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Shortanswer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1d|7 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

Simplify: (2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=

(iii) simplify (2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

NAGEEN PRAKASHAN-NUMBER SYSTEM-Exercise 1e
  1. Rationalise the denominator of each the following (i)(2)/(sqrt(3))" ...

    Text Solution

    |

  2. Rationalise the denominator of each the of the following : (i)(1)/(3...

    Text Solution

    |

  3. Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)...

    Text Solution

    |

  4. If sqrt(2)=1.414,sqrt(3)=1.732, find the value of the following : (i...

    Text Solution

    |

  5. Find the value of a and b in each of the following (i)(3+sqrt(2))/(3...

    Text Solution

    |

  6. If x=2+sqrt(3), then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii...

    Text Solution

    |

  7. If x=3+2sqrt(2), then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(ii...

    Text Solution

    |

  8. If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt...

    Text Solution

    |

  9. If a=1-sqrt(2),"then find the value of "(a-(1)/(a))^(3)

    Text Solution

    |

  10. Evaluate 15/( sqrt10+sqrt20+sqrt40-sqrt5-sqrt80) is being given that s...

    Text Solution

    |

  11. Write the following surds in decending order of their magnitudes : (...

    Text Solution

    |

  12. If 25^(x-1)=5^(2x-1)-100, then find the value of x.

    Text Solution

    |

  13. Which is greater sqrt(11)-sqrt(6) or sqrt(17)-sqrt(12) ?

    Text Solution

    |

  14. If x=7-4sqrt3 then find the value of sqrtx+1/sqrtx

    Text Solution

    |

  15. If x=2+sqrt(3), then find the value of x^(4)-4x^(3)+x^(2)+x+1.

    Text Solution

    |

  16. sqrt(5+2sqrt(6))+sqrt(8-2sqrt(15))

    Text Solution

    |

  17. If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27),...

    Text Solution

    |

  18. Rationalise the denominator of : (i)(5)/(3+sqrt(5)-2sqrt(2))" ...

    Text Solution

    |