Home
Class 11
MATHS
If f(x)=2(1+sin x), then evaluate f((pi)...

If `f(x)=2(1+sin x),` then evaluate `f((pi)/(2))`.

Text Solution

Verified by Experts

The correct Answer is:
N/a

`f(x)=2(1+sinx)`
`implies f((pi)/(2))=2(1+sin(pi)/(2))`
`=2(1+1)=4`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

If f(x)=|x|^(sin x|), then find f'(-(pi)/(4))

If f(x)=x+sin x, then find the value of int_(pi)^(2 pi)f^(-1)(x)dx

If f(x)=|cos x-sin x|, then f'((pi)/(2)) is equal to

20. If f(x)=sin^(2)x-cos^(2)x, Then find f((pi)/(12))

If f'(x)=k(cos x-sin x),f'(0)=3 and f((pi)/(2)) find f'(x)

If f'(x)=sin x+sin4x cos x then f'(2x^(2)+(pi)/(2))=

The area bounded by the graph of y=f(x), f(x) gt0 on [0,a] and x-axis is (a^(2))/(2)+(a)/(2) sin a +(pi)/(2) cos a then find the value of f((pi)/(2)) .

A function y=f(x) satisfies f''(x)=-(1)/(x^(2))-pi^(2)sin(pi x)f'(2)=pi+(1)/(2) and f(1)=0 then value of f((1)/(2)) is