Home
Class 11
MATHS
If f (x) =(x-1)/(x+1), then prove that...

If f (x) `=(x-1)/(x+1),` then prove that `f{f(x)}=-1/x.`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`f(x)=(x-1)/(x+1)`
`implies" "f{f(x)}=(f(x)-1)/(f(x)+1)`
`=((x-1)/(x+1)-1)/((x-1)/(x+1)+1)=(x-1-x-1)/(x-1+x+1)`
`=(-2)/(2x)=01/x.`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 2A|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(1-x) , then prove that : f[f{f(x)}]=x

If f(x)=x-(1)/(x) then prove that f(x)=-f((1)/(x))

f(x)=(1)/(1-x), thenprovethatf [f{f(x)}]=x

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

If f is a real function defined by f(x)=(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-(1)/(x), prove that x!=0

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)

If f(x)=(x-1)/(x+1), then find f{f(x)}