Home
Class 11
MATHS
If f(x) = x - (1)/(x) , then the value o...

If f(x) = x - `(1)/(x)` , then the value of f(x) + `f((1)/(x))` is :

A

0

B

2x

C

`(2)/(x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(x) + f\left(\frac{1}{x}\right) \) given that \( f(x) = x - \frac{1}{x} \). ### Step-by-Step Solution: 1. **Write down the function**: \[ f(x) = x - \frac{1}{x} \] 2. **Find \( f\left(\frac{1}{x}\right) \)**: To find \( f\left(\frac{1}{x}\right) \), we substitute \( \frac{1}{x} \) into the function: \[ f\left(\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{\left(\frac{1}{x}\right)} = \frac{1}{x} - x \] 3. **Combine \( f(x) \) and \( f\left(\frac{1}{x}\right) \)**: Now we need to add \( f(x) \) and \( f\left(\frac{1}{x}\right) \): \[ f(x) + f\left(\frac{1}{x}\right) = \left(x - \frac{1}{x}\right) + \left(\frac{1}{x} - x\right) \] 4. **Simplify the expression**: When we combine the two expressions, we notice that the terms cancel out: \[ f(x) + f\left(\frac{1}{x}\right) = x - \frac{1}{x} + \frac{1}{x} - x = 0 \] 5. **Final Result**: Therefore, the value of \( f(x) + f\left(\frac{1}{x}\right) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 2 G|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 2.1|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 2E|5 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=x+(1)/(x), then the value of f(x) is

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x)=(x(x-1))/(2), then the value of f(x+2) is-

If f(x ) = x^3 - 1/x^3 , then find the value of f(x) + f( 1/x )

If f(x) = x^5 - 1/x^5 then find the value of f(x) + f(1/x)

If f(x)=(x)/(x-1)=(1)/(y) then the value of f(y)

If x(x)=(x+1)/(x-1) , then the value of f(f(f(x))) is :

If f(x)=(x+1)/(x-1) then the value of f(f(f(x))) is :