Home
Class 11
MATHS
If P(n)= 1. 2 .3+2. 3 .4+....+n(n+1)(n+2...

If `P(n)= 1. 2 .3+2. 3 .4+....+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4` then P(K+1) equals

A

`(k(k+1)(k+2)(k+3))/4`

B

`(k(k+1)(k+2)(k+3)(k+4))/4`

C

`((k+1)(k+2)(k+3)(k+4))/4`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

Let P (n) `:1.2.3+2.3.4+3.4.5+…..` ,
`+n(n+1)(n+2)=1/4n(n+1)(n+2)(n+3)`
For n=1
`L.H.S. =1.2.3=6`
`R.H.S. =1/4 .1.(1+1)(1+2)(1+3)=6`
`:. " "L.H.S. =R.H.S.`
`rArr` P (n) is true for n=k.
`:. P (k) : 1.2.3+2.3.4+3.4.5+`
`.......+K(K+1)(k+2)`
`=1/4 k(k+1)(k+2)(k+3)`
For n =k+1
`p(k+1) :1.2.3+2.3.4+3.4.5+......+k(K=1)`
`(k+2)+(k+1)(K+2)(K+3)`
`=1/4 k(k+1)(k+2)(k+3)+(k+1)(K+2)(K+3)` ,
`=(k+1)(K+2)(K+3)((K)/(4)+1)`
`=1/4 (k+1)(K+2)(K+3)(K+4)`
`rArr` P (n) si also true for n=K+1
Hence from the principle of mathematical induction P(n) is true for all natural numbers n.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|1 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|11 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos

Similar Questions

Explore conceptually related problems

1.3+2.4+3.5+....+n(n+2)=(n(n+1)(2n+7))/(6)

1.2+2.3+3.4+.........+n(n+1)=(1)/(3)n(n+1)(n+3)

Using the principle of mathematical induction,prove that :.2.3+2.3.4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4) for all n in N

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If sum_(n=1)^(5)(1)/(n(n+1)(n+2)(n+3))=(k)/(3), then k is equal to :-

Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)

Prove by PMI that 1.2+2.3+3.4+....+n(n+1)=((n)(n+1)(n+2))/(3),AA n in N

1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)

NAGEEN PRAKASHAN-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise 4
  1. Using binomial theorem, prove that 2^(3n)-7^n-1 is divisible by 49 , w...

    Text Solution

    |

  2. 1+1/(1+2)+1/(1+2+3)+1/(1+2+3+n)=(2n)/(n+1)

    Text Solution

    |

  3. If P(n)= 1. 2 .3+2. 3 .4+....+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 then P...

    Text Solution

    |

  4. 1. 2 .3+2. 3 .4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4

    Text Solution

    |

  5. 1.3+2.3^2+3.3^3+..............+n.3^n=((2n-1)3^(n+1)+3)/4

    Text Solution

    |

  6. Prove by PMI that 1.2+ 2.3+3.4+....+ n(n+1) =((n)(n+1)(n+2))/3, AA n i...

    Text Solution

    |

  7. 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

    Text Solution

    |

  8. 1.2+2.2^2+3.2^3+.....+n.2^n=(n-1)2^(n-1)+2

    Text Solution

    |

  9. 1/2+1/4+1/8+1/16+.......+1/2^n=

    Text Solution

    |

  10. Prove the following by the principle of mathematical induction:1/(2...

    Text Solution

    |

  11. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  12. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  13. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  14. (1+(1)/1)(1+(1)/(2))(1+(1)/(3))......(1+(1)/n) n(n+1)

    Text Solution

    |

  15. 1^(2)+3^(2)+5^(2)+.......+(2n-1)^(2) =(n(2n-1)(2n+1))/(3)

    Text Solution

    |

  16. Prove the following by the principle of mathematical induction: 1/(1...

    Text Solution

    |

  17. Prove the following by the principle of mathematical induction: 1/(...

    Text Solution

    |

  18. Prove that 1+2+3+4........+N<1/8(2n+1)^2

    Text Solution

    |

  19. Prove that n(n+1)(n+5) is a multiple of 3.

    Text Solution

    |

  20. Prove by the principle of induction that for all n N ,\ (10^(2n-1)+1)...

    Text Solution

    |