Home
Class 11
MATHS
1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+...

`1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3`

Text Solution

Verified by Experts

Let
`P(n) :1 .3+3.5+5.7 +……+ (2n -1)(2n+1)`
`=1/3 n(4n^(2)+6n-1)`
For n =1
`L.H.S. =1.3=3`
`R.H.S.=1/3 .1.(4.1^(2)+6.1-1)`
`=1/3(4 +6-1)=3`
`:. L.H.S. =R.H.S.`
Therefore P (n) is true for n=1
Let P (n) be true for n=k.
`p(k) : 1.3 +3.5 +5.7 +....+(2k-1)(2k+1)`
`=1/3 k(4k^(2)+6k-1)`
For n=k+1
` 1.3 +3.5+5.7 +.......`
`+(2K-1)(2K+1)+(2k+1)(2K+3)`
`=1/3k(4K^(2)+6K-1)+(2K+1)(2K+1)(2K+3)`
`(K(4K^(2)+6K-1)+3(2K+1)(2K+3))/(3)`
`=1/3(4k^(2)+18K^(2)+23k+9)`
`=1/3(k+1)(4k^(2)+14k+9)`
`=1/3(k+1)[4(K^(2)+2K+1)+6(K+1)-1]`
`=1/3(k+1)[4(K+1)^(2)+6(K+1)-1]`
`rArr` P (n) is also true for n=K+1
Hence from the principle of mathematical induction P (n) is true for all positive integers n .
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|1 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|11 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: 1.3+2.4+3.5++(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)

(1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+......+(n^(4)) /((2n-1)(2n+1))=(n(4n^(2)+6n+5))/(48)+(n)/(16(2n+1))

The A.M.of the observations 1.3.5,3.5.7,5.7.9,......,(2n-1)(2n+1)(2n+3) is (AA n in N)

The A.M of the observations 1.3.5,3.5.7,5.7.9,...,(2n-1)(2n+1)(2n+3) is

(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

1.4+2.5+.......+n(n+3)=

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

1.2+2.3+3.4+.........+n(n+1)=(1)/(3)n(n+1)(n+3)

Find lim_(n rarr oo)((1.3.5...(2n-1)}(n+1)^(4)]+[n^(4)(1.3.5...(2n-1)) (2n+1)]

NAGEEN PRAKASHAN-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise 4
  1. 1.3+2.3^2+3.3^3+..............+n.3^n=((2n-1)3^(n+1)+3)/4

    Text Solution

    |

  2. Prove by PMI that 1.2+ 2.3+3.4+....+ n(n+1) =((n)(n+1)(n+2))/3, AA n i...

    Text Solution

    |

  3. 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

    Text Solution

    |

  4. 1.2+2.2^2+3.2^3+.....+n.2^n=(n-1)2^(n-1)+2

    Text Solution

    |

  5. 1/2+1/4+1/8+1/16+.......+1/2^n=

    Text Solution

    |

  6. Prove the following by the principle of mathematical induction:1/(2...

    Text Solution

    |

  7. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. (1+(1)/1)(1+(1)/(2))(1+(1)/(3))......(1+(1)/n) n(n+1)

    Text Solution

    |

  11. 1^(2)+3^(2)+5^(2)+.......+(2n-1)^(2) =(n(2n-1)(2n+1))/(3)

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1/(1...

    Text Solution

    |

  13. Prove the following by the principle of mathematical induction: 1/(...

    Text Solution

    |

  14. Prove that 1+2+3+4........+N<1/8(2n+1)^2

    Text Solution

    |

  15. Prove that n(n+1)(n+5) is a multiple of 3.

    Text Solution

    |

  16. Prove by the principle of induction that for all n N ,\ (10^(2n-1)+1)...

    Text Solution

    |

  17. x^(2n-1)+y^(2n-1) is divisible by x+y

    Text Solution

    |

  18. 3^(2n+2)-8n-9 divisible by 8

    Text Solution

    |

  19. 4 1^n-1 4^n is a multiple of 27

    Text Solution

    |

  20. Prove the following (2n+7) lt (n+3)^(2)

    Text Solution

    |